32,348 research outputs found

    Contributions to the width difference in the neutral DD system from hadronic decays

    Full text link
    Recent studies of several multi-body D0D^0 meson decays have revealed that the final states are dominantly CPCP-even. However, the small value of the width difference between the two physical eigenstates of the D0D^0-D‾0\overline{D}{}^0 system indicates that the total widths of decays to CPCP-even and CPCP-odd final states should be the same to within about a percent. The known contributions to the width difference from hadronic D0D^0 decays are discussed, and it is shown that an apparent excess of quasi-CPCP-even modes is balanced, within current uncertainty, by interference effects in quasi-flavour-specific decays. Decay modes which may significantly affect the picture with improved measurements are considered.Comment: 17 pages including 3 tables. v2: Updated with published version including new comments in summar

    Spatial learning and memory in the tortoise (Geochelone carbonaria)

    Get PDF
    A single tortoise (Geochelone carbonaria) was trained in an eight-arm radial maze, with the apparatus and general procedures modeled on those used to demonstrate spatial learning in rats. The tortoise learned to perform reliably above chance, preferentially choosing baited arms, rather than returning to arms previously visited on a trial. Test sessions that examined control by olfactory cues revealed that they did not affect performance. No systematic, stereotyped response patterns were evident. In spite of differences in brain structure, the tortoise showed spatial learning abilities comparable to those observed in mammals

    The bacillary and macrophage response to hypoxia in tuberculosis and the consequences for T cell antigen recognition

    Get PDF
    M. tuberculosis is a facultative anaerobe and its characteristic pathological hallmark, the granuloma, exhibits hypoxia in humans and in most experimental models. Thus the host and bacillary adaptation to hypoxia is of central importance in understanding pathogenesis and thereby to derive new drug treatments and vaccines

    Absorption of Energy at a Metallic Surface due to a Normal Electric Field

    Full text link
    The effect of an oscillating electric field normal to a metallic surface may be described by an effective potential. This induced potential is calculated using semiclassical variants of the random phase approximation (RPA). Results are obtained for both ballistic and diffusive electron motion, and for two and three dimensional systems. The potential induced within the surface causes absorption of energy. The results are applied to the absorption of radiation by small metal spheres and discs. They improve upon an earlier treatment which used the Thomas-Fermi approximation for the effective potential.Comment: 19 pages (Plain TeX), 2 figures, 1 table (Postscript

    Measurements of flow phenomena induced by suction through perforated and partially plugged surfaces

    Get PDF
    Efforts were directed towards completing construction of the windtunnel test section, assembling instrumentation, programming the data acquisition and reduction system, adjusting the streamwise pressure gradient of the test section, calibrating the hot-wire anemometer probe, and constructing and testing a smoke generator. The test section was installed in the wind tunnel and is completely operational. The streamwise pressure gradient was adjusted to be nominally zero at a free-stream velocity of 3.05 m/s (10 ft/s). This was accomplished by adjusting the upper wall of the test section to be slightly divergent. The change in static pressure between any two streamwise locations in the test section was less than one percent of the free-stream dynamic pressure. A suitable means was found for accurately calibrating the hot-wire probe which is used to measure boundary-layer velocity profiles and fluctuating velocities

    Experimental study of flow due to an isolated suction hole and a partially plugged suction slot

    Get PDF
    Details for construction of a model of a partially plugged, laminar flow control, suction slot and an isolated hole are presented. The experimental wind tunnel facility and instrumentation is described. Preliminary boundary layer velocity profiles (without suction model) are presented and shown to be in good agreement with the Blasius laminar profile. Recommendations for the completion of the study are made. An experimental program for study of transition on a rotating disk is described along with preliminary disturbance amplification rate data

    Ergodic and non-ergodic clustering of inertial particles

    Full text link
    We compute the fractal dimension of clusters of inertial particles in mixing flows at finite values of Kubo (Ku) and Stokes (St) numbers, by a new series expansion in Ku. At small St, the theory includes clustering by Maxey's non-ergodic 'centrifuge' effect. In the limit of St to infinity and Ku to zero (so that Ku^2 St remains finite) it explains clustering in terms of ergodic 'multiplicative amplification'. In this limit, the theory is consistent with the asymptotic perturbation series in [Duncan et al., Phys. Rev. Lett. 95 (2005) 240602]. The new theory allows to analyse how the two clustering mechanisms compete at finite values of St and Ku. For particles suspended in two-dimensional random Gaussian incompressible flows, the theory yields excellent results for Ku < 0.2 for arbitrary values of St; the ergodic mechanism is found to contribute significantly unless St is very small. For higher values of Ku the new series is likely to require resummation. But numerical simulations show that for Ku ~ St ~ 1 too, ergodic 'multiplicative amplification' makes a substantial contribution to the observed clustering.Comment: 4 pages, 2 figure

    Magnetic Dipole Absorption of Radiation in Small Conducting Particles

    Full text link
    We give a theoretical treatment of magnetic dipole absorption of electromagnetic radiation in small conducting particles, at photon energies which are large compared to the single particle level spacing, and small compared to the plasma frequency. We discuss both diffusive and ballistic electron dynamics for particles of arbitrary shape. The conductivity becomes non-local when the frequency is smaller than the frequency \omega_c characterising the transit of electrons from one side of the particle to the other, but in the diffusive case \omega_c plays no role in determining the absorption coefficient. In the ballistic case, the absorption coefficient is proportional to \omega^2 for \omega << \omega_c, but is a decreasing function of \omega for \omega >> \omega_c.Comment: 25 pages of plain TeX, 2 postscipt figure
    • …
    corecore